A Statistical Method for the Detection of Alternative Splicing Using RNA-Seq
نویسندگان
چکیده
Deep sequencing of transcriptome (RNA-seq) provides unprecedented opportunity to interrogate plausible mRNA splicing patterns by mapping RNA-seq reads to exon junctions (thereafter junction reads). In most previous studies, exon junctions were detected by using the quantitative information of junction reads. The quantitative criterion (e.g. minimum of two junction reads), although is straightforward and widely used, usually results in high false positive and false negative rates, owning to the complexity of transcriptome. Here, we introduced a new metric, namely Minimal Match on Either Side of exon junction (MMES), to measure the quality of each junction read, and subsequently implemented an empirical statistical model to detect exon junctions. When applied to a large dataset (>200M reads) consisting of mouse brain, liver and muscle mRNA sequences, and using independent transcripts databases as positive control, our method was proved to be considerably more accurate than previous ones, especially for detecting junctions originated from low-abundance transcripts. Our results were also confirmed by real time RT-PCR assay. The MMES metric can be used either in this empirical statistical model or in other more sophisticated classifiers, such as logistic regression.
منابع مشابه
dSpliceType: A Multivariate Model for Detecting Various Types of Differential Splicing Events Using RNA-Seq
Alternative splicing plays a key role in regulating gene expression. Dysregulated alternative splicing events have been linked to a number of human diseases. Recently, the high-throughput RNA-Seq technology provides unprecedented opportunities and holds a strong promise for better characterizing and dissecting alternative splicing events on a whole transcriptome scale. Therefore, efficient and ...
متن کاملMATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data
Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon sp...
متن کاملMapping Splicing Quantitative Trait Loci in RNA-Seq
BACKGROUND One of the major mechanisms of generating mRNA diversity is alternative splicing, a regulated process that allows for the flexibility of producing functionally different proteins from the same genomic sequences. This process is often altered in cancer cells to produce aberrant proteins that drive the progression of cancer. A better understanding of the misregulation of alternative sp...
متن کاملComparison of RNA-seq and Microarray Platforms for Splice Event Detection using a Cross-Platform Algorithm
RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing events. Commercial arrays that include probes within exon junctions have been developed in order to overcome this problem. We compare the performance of RNA-seq (Illumina HiSeq) and ...
متن کاملDetecting differential usage of exons from RNA-seq data.
RNA-seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires sensitive and specific detection of differential isoform abundance in comparisons between conditions, cell types, or tissues. We present DEXSeq, a statistical method to test for differential exon usage in RNA-seq data. DEXSe...
متن کامل